ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени И.Т. ТРУБИЛИНА»

Кафедра физиологии и биохимии растений

УТВЕРЖДА	AIO:
Проректор по нау	чной работе,
д.б.н., профессор	
	Кощаев А.Г.
«»_	2018 г.

ОТЧЕТ

Проведение регистрационных испытаний агрохимиката Грин Лифт «Бор» на сое

Руководитель: профессор кафедры физиологии и биохимии растений, к.-с.-х.н.

А.Я. Барчукова

ИСПОЛНИТЕЛИ:

Научный сотрудник, к.б.н.

Научный сотрудник, к.б.н.

Научный сотрудник, к.с.-х.н.

Я.К. Тосунов

Лаборант-исследователь

Н.Ю. Быкова

Специалист

А.И. Чернышев

- **1.Наименование учреждения, проводящего испытания и его адрес:** Федеральное государственное бюджетное учреждение высшего образования «Кубанский государственный аграрный университет имени И.Т. Трубилина». 350044, г. Краснодар, ул. Калинина, 13, корпус факультета защиты растений, кафедра физиологии и биохимии растений. Раб. тел. 8(861) 221-58-51.
- **2.Агрохимикат:** комплексное органоминеральное удобрение «Грин Лифт «Бор». Содержание питательных элементов, не менее, г/л: азот (N) 11,0, фосфор (P_2O_5) 39,0, калий (K_2) 25,0, бор этаноламин 110,0, магний (Mg) 9,0, кремний (Si) 4,5, сера (S) 13,0.

Препаративная форма — темная жидкость с оттенками черного и коричневого цвета.

3.Цель испытания: установление биологической эффективности агрохимиката комплексное органоминеральное удобрение «Грин Лифт «Бор» на сое.

4.Объект исследования: соя сорта Вилана.

Вилана — среднераннеспелый сорт сои, вегетационный период — 115-118 дней. Растения имеют высоту от 110 см, устойчивы к полеганию и закладывают нижние бобы на уровне 14-19 см от поверхности почвы. Главный стебель и ветви прямые и грубые, верхушка заканчивается бобами. Тип роста растений индетерминантный, куст — компактный. Опушение растений густое, серой окраски. Листья тройчатые, средние по размеру, овальные с заостренным кончиком, цветки фиолетовой окраски, собраны в кисти по 2-6 шт. в каждой. Бобы средней величины, преимущественно трехсемянные, по форме слабоизогнутые. Окраска створок бобов при созревании светло-коричневая. Устойчивость к растрескиванию бобов при перестое высокая. Семена средней крупности, масса 1000 семян — 160-180 г. Форма семян удлиненная, окраска семенной кожуры — желтая.

Сорт характеризуется высокой потенциальной семенной продуктивностью. В сортоиспытаниях ВНИИМК средняя урожайность семян за 1995-1998 гг. составила 2,52 т/га, а в оптимальный по влажности год достигла 4 т/га. В семенах содержится 39,90-40,85 % белка и 21,5-23,4 % масла.

Сорт устойчив к пепельной гнили на 92 % и к раку стеблей – на 66 %.

5.Почвенно-климатические условия.

Почва — выщелоченный чернозем. Мощность гумусового горизонта превышает 150 см. Почвы богаты валовым калием; количество валового фосфора в верхних горизонтах составляет 0,18 %, основная часть представлена минеральными соединениями, в верхних горизонтах на 55-65 %, в нижних — более 90 % от валового количества, органические фосфаты содержатся в количестве 43 % в верхних и 8-10 % в нижних горизонтах. Черноземы об-

ладают высокой влагоудерживающей способностью, но характеризуются низким диапазоном активной влаги. Из общего количества почвенной влаги лишь менее 50 % относится к категории активной или продуктивной влаги [2].

Климат – район закладки опытов – неустойчиво-влажная зона. Коэффициент увлажнения 0,25-0,30. За год выпадает 500-600 мм осадков. Теплообеспеченность района 3250-3600 °C. Зима умеренно мягкая. Среднемесячная температура января плюс 2,5 – минус 4 °C, минимальная температура минус 30-36 °C, высота снежного покрова 5-7 см, в 50-70 % снежный покров неустойчив. Возобновление вегетации озимых отмечается в третьей декаде марта. Безморозный период продолжается 185-220 дней. Лето жаркое с преобладанием ясной и сухой погоды. Средняя месячная температура июля – плюс 22-24 °C. Максимальная в отдельные дни повышается до плюс 38-40 °C. Жарких дней (со среднесуточной температурой выше плюс 20 °C) насчитывается за лето до 80-90. Сумма осадков за период активной вегетации составляет 250-300 мм. Преобладают ветры восточного и северо-восточного направлений, вызывающие зимой, при наличии низких температур, вымерзание посевов, а при большой скорости – пыльные бури. Отличительной чертой весеннего периода зоны является быстрый подъем температуры. Характерной особенностью осеннего периода являются значительные колебания температуры воздуха в течение суток от плюс 1-2 °C ночью до плюс 25-26 °C – днем.

Таблица 1 – Погодные условия в период вегетации 2018 г.

Месяц	Температура воздуха, °С		Количество о	садков, мм	Относительная влаж- ность воздуха, %	
	средняя	текущего	среднее	текущего	средняя	текущего
	многолетняя	года	многолетнее	года	многолетняя	года
Апрель	10,9	13,8	48,0	10,7	69,0	41,3
Май	16,8	19,3	57,0	14,7	67,0	63,7
Июнь	20,4	23,8	67,0	28,7	65,7	52,7
Июль	23,2	26,2	58,0	41,8	64,3	60,3
Август	22,8	25,8	36,5	33,3	63,7	45,3
Сентябрь	17,7	19,9	58,6	31,7	68,3	64,0

Данные таблицы 1 указывают на то, что погодные условия существенно отличались от средних многолетних. Все рассматриваемые данные (температура воздуха, количество осадков, относительная влажность воздуха) значительно превзошли таковые средние многолетние. При этом, высокая температура и установившаяся длительная засуха отрицательно сказались на

росте и развитии растений, формировании репродуктивных органов, урожайности и качестве получаемой продукции.

6.Схема опыта и методика исследований.

Схема опыта:

- Контроль без подкормки растений;
- Комплексное органоминеральное удобрение «Грин Лифт «Бор» некорневая подкормка растений: 1-я в фазе 3-го тройчатого листа, 2-я в фазе бутонизации (расход агрохимиката 0,5 л/га, расход рабочего раствора 300 л/га);
- Комплексное органоминеральное удобрение «Грин Лифт «Бор» некорневая подкормка растений: 1-я в фазе 3-го тройчатого листа, 2-я в фазе бутонизации (расход агрохимиката 1,0 л/га, расход рабочего раствора 300 л/га);
- Комплексное органоминеральное удобрение «Грин Лифт «Бор» некорневая подкормка растений: 1-я в фазе 3-го тройчатого листа, 2-я в фазе бутонизации (расход агрохимиката 1,5 л/га, расход рабочего раствора 300 л/га).

Учетная площадь делянки -25 m^2 , повторность - четырехкратная.

Отбор растительных проб для определения показателей роста (высоты растений, массы надземных органов, числа ветвей и листьев, их площади) проводили в фазе налива семян, когда вегетативный рост растений прекращается.

Перед уборкой проводили отбор модельных снопов для структурного анализа урожая (определения числа ветвей, бобов, семян и их массы, массы 1000 семян); в средних пробах зерна определяли содержание белка и жира [6].

Величину урожайности определяли по убранному общему валу зерна сои с учетной площади.

Полученные данные обрабатывали математически методом дисперсионного анализа по Б.А. Доспехову [4].

Агротехника в опыте:

Опыт поставлен на производственных посевах сои в учхозе «Кубань» КубГАУ. Агротехника в опыте – общепринятая в хозяйстве.

Предшественник – озимая пшеница.

Посев – 16.04.18 г.

Фаза всходов – 26.04.18 г.

1-й тройчатый лист -8.05.18 г.

3-й тройчатый лист — 18.05.18 г., 1-я обработка растений — согласно схеме опыта.

Фаза бутонизации — 30.05.18 г., 2-я обработка растений — согласно схеме опыта.

Начало цветения – 2.06.18 г/

Начало налива семян -6.08.18 г., отбор растительных проб.

Отбор модельных снопов — для проведения структурного анализа урожая — $7.09.18 \, \Gamma$.

Уборка урожая – 10.09.18 г.

7. Результаты исследований и их обсуждение

Соя — культура двойного промышленного использования, она является источником не только белка (28-50 %), но и масла (16-27 %). Кроме того в семенах сои содержатся 18-25 % разнообразных солей, 12 % основных витаминов, 5 % минеральных солей, а также специфические биологически активные компоненты (фосфатиды, изофлавоны, сапонины, фитаты, олигосахариды).

Соя генетически предрасположена на улучшение обеспеченности влагой и элементами минерального питания. Для достижения высокой продуктивности сое требуется достаток влаги в течение всего генеративного периода: от начала цветения до завершения налива семян [8, 13].

Соя характеризуется специфичностью питания как в количественном, так и качественном отношении. Недостаток азота, фосфора и калия в период роста замедляет темпы роста растений, приводит к формированию мелких листьев [5, 9, 10].

Эффективность удобрений на сое в значительной степени зависит от способов и сроков их внесения. Наряду с азотом, фосфором и калием, для нормального роста сое необходимы сера, кальций, микроэлементы – бор, молибден, марганец, магний, железо, кобальт и другие. Так, недостаток бора вызывает некроз тканей стеблей и их гибель [3], магния – приводит к уменьшению содержания фосфора в растениях [11], серы – происходят морфологические изменения растения: мелковатость листьев, укорочение и одревеснение стеблей [1], недостаток кремния задерживает рост и развитие растений, повышает их восприимчивость к болезням и вредителям.

Перечисленные выше элементы входят в состав испытуемого препарата и воздействуют на рост и развитие растений сои при проведении им некорневых подкормок.

Таблица 2 – Влияние препарата Грин Лифт «Бор» на рост растений сои

Вариант	Высота растений, см	Число вет- вей, шт.	Масса надземных органов, г/растение		
			сырая	сухая	
Контроль – без обработки	54,6	1,8	18,91	5,37	
Грин Лифт «Бор» — 2 ^x - кратная некорневая под- кормка растений (0,5 л/га)	59,9	2,5	29,78	8,55	
Грин Лифт «Бор» — 2 ^x - кратная некорневая под- кормка растений (1,0 л/га)	64,3	2,8	37,95	11,42	
Грин Лифт «Бор» — 2 ^x - кратная некорневая под- кормка растений (1,5 л/га)	61,8	2,7	34,65	10,22	
HCP ⁰⁵	2,7	0,1	1,37	0,41	

Данные исследований (табл. 2) показывают, что проведение некорневой подкормки растений сои препаратом Грин Лифт «Бор» дважды (1-я в фазе 3-го тройчатого листа, 2-я – в фазе бутонизации) усиливает рост растений в высоту (59,9-64,3 см, в контроле – 54,6 см), процесс ветвления (2,5-2,8 шт., в контроле – 1,8 шт. ветвей), нарастание надземными органами сырой и сухой массы (29,78-37,95 и 8,55-11,42 г, в контроле – 18,91 и 5,37 г/растение соответственно). Максимальные значения рассматриваемых в таблице 2 показателей отмечены в варианте с применением испытуемого препарата в дозе 1,0 л/га. Очевидно в указанном варианте сочетание элементов, входящих в состав испытуемого препарата, наиболее оптимальное для исследуемой культуры.

Отмеченное вполне совпадает с ранее проведенными исследованиями. Было установлено, что как при избытке бора, так и при его недостатке, наблюдается нарушение жизнедеятельности растений. Растения без серы не могут нормально функционировать, но ее избыток в среде и тканях вызывает их угнетение и даже гибель 3, 7, 12].

Накопление сухого вещества является функцией процесса ассимиляции. Абсолютный прирост сухой массы увеличивается пропорционально площади листовой поверхности.

Таблица 3 — Влияние препарата Грин Лифт «Бор» на формирование листового аппарата растений сои

Вариант	Число листьев, шт.	Масса листо- вых пла- стинок, г	Площадь листьев, см ²	Про- дук- тив- ность работы листь- ев, г/дм ²		кание в л ов, мг/г о хл. b	пистьях сыр. в-ва каро- тинои- ды
Контроль – без обработки	11,0	5,64	96,0	5,9	1,87	0,55	0,37
Грин Лифт «Бор» — 2 ^x -кратная не-корневая под-кормка растений (0,5 л/га)	14,8	7,38	123,8	6,0	2,23	0,70	0,45
Грин Лифт «Бор» -2^x -кратная некорневая подкормка растений $(1,0 \ \pi/\Gamma a)$	16,0	9,94	151,4	6,6	3,48	0,99	0,76
Грин Лифт «Бор» -2^{x} -кратная некорневая подкормка растений $(1,5 \text{ п/гa})$ $+CP^{05}$	15,5	8,59 0,37	140,1	6,1	2,88	0,87	0,62

Применение в технологии возделывания сои испытуемого препарата, даже в экстремальных погодных условиях (длительная почвенная и воздушная засуха, высокая температура — более 35 °C), сдержавших образование клубеньков, а следовательно и снабжение растений азотом, активизировало процесс нарастания листового аппарата (число листьев — 14.8-16.0 шт., в контроле — 11.0 шт.; площадь листьев — 123.8-151.4 см², в контроле — 96.0 см²; биомасса листовых пластинок — 7.38-9.94 и 5.64 г соответственно) и продуктивность работы листьев (6.0-6.6, в контроле — 5.9 г/дм²).

Существенное превышение площади листьев растений опытных вариантов обусловлено тем, что проведенные некорневые подкормки их испытуемым препаратом повысили жизнеспособность листьев, замедлили их старение и преждевременное разложение хлорофилла (хл. а + b - 2,93-4,47, в контроле - 2,42 мг/г сыр. в-ва).

Усиление ростовых процессов и фотосинтетической деятельности растений сои под действием испытуемого препарата положительно сказалось на формировании репродуктивных органов.

Таблица 4 – Влияние препарата Грин Лифт «Бор» на формирование структурных элементов урожая сои

Вариант	Количество, шт./растение		Масса, г/растение		Macca 1000 ce-
	бобов	семян	бобов	семян	мян, г
Контроль – без обработки	21,0	40,1	6,87	5,43	134,3
Грин Лифт «Бор» — 2^x -кратная некорневая подкормка растений $(0,5 \text{ л/га})$	28,4	53,6	10,08	7,52	141,4
Грин Лифт «Бор» — 2^x -кратная некорневая подкормка растений (1,0 л/га)	34,0	67,2	13,92	9,98	150,1
Грин Лифт «Бор» — 2^x -кратная некорневая подкормка растений (1,5 л/га)	31,8	66,0	12,75	9,34	144,0
HCP ⁰⁵	1,3	2,6	0,51	0,38	6,5

Из данных таблицы 4 видно, что двукратная некорневая подкормка растений сои препаратом Грин Лифт «бор», усилив режим питания, способствовала формированию в опытных вариантах большего числа бобов и семян (28,4-34,0 шт. и 21,0 шт.; 53,6-67,2 и 40,1 шт./растение соответственно), повышению семенной продуктивности (масса семян с растения -7,52-9,98, в контроле -5,43 г) за счет формирования большего числа более крупных и выровненных семян (масса 1000 семян -141,4-150,1, в контроле -134,3 г).

Интересно отметить, что максимальные абсолютные значения элементов структуры урожая получены при применении испытуемого препарата в дозе 1,0 л/га. При снижении, либо повышении дозы, эти значения снижались. Очевидно, правильное соотношение элементов, входящих в состав препарата, правильная доза — это ключ к получению высокого и качественного урожая.

Таблица 5 — Влияние препарата Грин Лифт «Бор» на урожайность Семян сои и содержание в них белка и жира

Вариант	Урожай- ность, ц/га	Прибавка н	к контролю	Содержание в семе- нах, %	
Биришт				белка	жира
		ц/га	%	0 0011100	
Контроль – без обра- ботки	13,3	-	-	38,5	19,5
Грин Лифт «Бор» -2^x - кратная некорневая подкормка растений (0.5 л/га)	14,5	1,2	9,0	39,1	19,9
Грин Лифт «Бор» -2^x - кратная некорневая подкормка растений $(1,0 \text{ л/гa})$	15,1	1,8	13,5	39,6	20,8
Грин Лифт «Бор» -2^x - кратная некорневая подкормка растений $(1,5 \text{ л/га})$	14,9	1,6	12,0	39,3	20,6
HCP ⁰⁵	0,7				

Приведенные в таблице 5 данные указывают на тот факт, что применение в технологии возделывания сои препарата Грин Лифт «Бор» обеспечивает получение высокой прибавки урожая -9,0-13,5 %, при урожайности 13,3 ц/га, даже при стрессовых погодных условиях. При этом в семенах сои возросло содержание белка и жира.

8.Заключение.

В результате проведенных исследований установлено:

— проведение некорневой подкормки растений сои препаратом Грин Лифт «Бор» в дозе 1,0 л/га (расход рабочего раствора — 300 л/га) двукратно (1-я в фазе 3-го тройчатого листа, 2-я — в фазе бутонизации) целесообразно и эффективно, что обусловлено усилением роста и развития растений, существенным повышением урожайности (15,1 ц/га, в контроле 13,3 ц/га, НСР $_{05}$ — 0,7 ц/га) и содержания в семенах белка и жира (39,6 и 20,8 %, в контроле 38,5 и 19,5 % соответственно).

Литература:

1. Артюшин А.М. Перспективы применения минеральных удобрений и агрохимическая служба СССР / А.М. Артюшин // Химия в сельском хозяйстве, $1976. - \mathbb{N} \ 6. - \mathbb{C}. \ 3-7.$

- 2. Вальков В.Ф. Почвы Краснодарского края, иъх использование и охрана / В.Ф. Вальков, Ю.А. Штомпель, И.Т. Трубилин, Н.С. Котляров, Г.М. Соляник. Ростов-н/Д: Изд-во СКНЦ ВШ, 1996. 191 с.
- 3. Власюк П.А. Биологические элементы в жизнедеятельности растений / П.А. Власюк. Киев: Наукова Думка, 1969. 516 с.
- 4. Доспехов Б.А. Методика полевого опыта / Б.А. Доспехов. М.: Колос, 1985.
- 5. Енкен В.Б. Соя / В.Б. Енкен. М.: Сельхозгиз, 1959. 622 c.
- 6. Иванов Н.Н. Методика физиологии и биохимии растений / Н.Н. Иванов. 4 изд., исп. и доп. М.-Л.: Сельхозиздат, 1946. 493 с.
- 7. Кибаленко А.П. Значение бора в метаболизме растительной клетки / Микроэлементы в обмене веществ растений / А.П. Кибаленко. Киев: Наукова Думка, 1976. С. 93-125.
- 8. Конова Л. Распож, развитие и добивна соята в зависимост от почвената поръности. / Л. Конова, А. Христов. Киев: Наукова думка, 1981. 236 с.
- 9. Куркаев В.Т. Диагностика питания сои и применение удобрений / В.Т. Куркаев // Диагностика потребности растений в удобрениях. М.: Колос, 1970. С. 294-297.
- 10. Лещенко А.К. Культура сои / А.К. Лещенко. Киев: Наукова Думка, 1978. 236 с.
- 11. Полевой В.В. Физиология растений / В.В. Полевой. — М.: Высшая школа, 1989.-464 с.
- 12.Полякова Л.Я. О метаболизме серы в растениях / Л.Я. Полякова // Серное питание и продуктивность растений. Киев: Наукова Думка, 1983. С. 30-45.
- 13. Черноголовин В.П. Соя на орошаемых землях / В.П. Черноголовин, В.Н. Лукашев // Зерновое хозяйство, 1977. № 6. С. 47.